skip to Main Content

I am facing an issue resource not found error.
This is what I have tried:

  1. Checked the version, azure_openai_api_key, modelname, version and
    everything is correct.
  2. The model was deployed yesterday so more than
    5 minutes have passed.
  3. I already have an embeddings model in Azure
    openAI and embeddings are created and stored in local.

I have cross checked the logs in Azure and the console says that the requests are reached.

I am not sure why I am getting this error even though everything seems to be correct and in line with Langchain and Azure OpenAI documentation.

import os
import dill  # Import dill instead of pickle
import streamlit as st
from dotenv import load_dotenv
from langchain_community.document_loaders import PyPDFLoader
from langchain_community.vectorstores import FAISS
from azure.storage.blob import BlobServiceClient
from langchain_openai import AzureOpenAIEmbeddings
from langchain_openai import AzureOpenAI
from langchain.chains import RetrievalQA
from langchain.prompts import PromptTemplate

load_dotenv()

//ex: entries in .env
AZURE_OPENAI_ENDPOINT="https://jkazureopenaiservice.openai.azure.com/"
AZURE_OPENAI_API_KEY = "key"
DEPLOYMENT_NAME = "gpt-4o"  # The name of your model deployment in Azure
AZURE_OPENAI_API_VERSION = "2024-05-13"
AZURE_OPENAI_DEPLOYMENT = "gpt-4o"


# Azure OpenAI configuration
AZURE_OPENAI_API_BASE = os.getenv("AZURE_OPENAI_API_BASE")
AZURE_OPENAI_API_KEY = os.getenv("AZURE_OPENAI_API_KEY")
AZURE_OPENAI_API_VERSION = "2024-05-13"
DEPLOYMENT_NAME = os.getenv("DEPLOYMENT_NAME")


# Path to the folder containing your PDFs
pdf_folder_path = './localKnowledgeHub'

# Initialize a list to hold all documents
all_documents = []

# Load each PDF file
for filename in os.listdir(pdf_folder_path):
    if filename.endswith('.pdf'):
        file_path = os.path.join(pdf_folder_path, filename)
        loader = PyPDFLoader(file_path)
        documents = loader.load()
        all_documents.extend(documents)

# Initialize the embeddings model
embeddings = AzureOpenAIEmbeddings(
    model="text-embedding-3-large"
)

# Create the FAISS vector store
#vector_store = FAISS.from_documents(all_documents, embeddings)
#vector_store.save_local("vectorstore")

# Load the vector store locally
vector_store = FAISS.load_local("vectorstore", embeddings, allow_dangerous_deserialization=True)

# Initialize the Azure OpenAI language model
llm = AzureOpenAI(
    api_key=AZURE_OPENAI_API_KEY,
    api_version=AZURE_OPENAI_API_VERSION,
    deployment_name=DEPLOYMENT_NAME,
    temperature=70
)

# Define the prompt template
PROMPT_TEMPLATE = """You are an AI Assistant. Given the following context:
{context}
Answer the following question:
{question}
Assistant:"""

PROMPT = PromptTemplate(
    template=PROMPT_TEMPLATE, input_variables=["context", "question"]
)
# Create a retrieval QA chain using LangChain with the custom prompt
qa_chain = RetrievalQA.from_chain_type(
    llm=llm,
    chain_type="stuff",  # 'stuff' means directly use documents retrieved
    retriever=vector_store.as_retriever(),
    chain_type_kwargs={"prompt": PROMPT}
)

# Set up the Streamlit UI
st.title("Chatbot")
st.write("Ask me anything a.")

# Input box for user questions
user_question = st.text_input("Question:")

# When the user submits a question
if user_question:    
    # Get the answer from the QA chain using the invoke method
    try:
        result = qa_chain.invoke({"query": user_question})
        answer = result['output_text']
    except Exception as e:
        answer = f"An error occurred: {str(e)}"
    
    # Display the answer
    st.write("Answer:", answer)

2

Answers


  1. According to this document the latest preview and GS versions are 2024-07-01-preview and 2024-06-01.

    And whatever you given the api version is not supported, so you are getting no resource found error.

    Try any one of the above api version.

    I tried you code with sample pdf file give one of the above api version.

    Output:

    enter image description here

    You can also find sample code in your ai studio chat playground, where you will the api version supported.

    enter image description here

    and the code.

    enter image description here

    It is also recommended to use azure_ad_token_provider instead of using api key.

    Login or Signup to reply.
  2. Instead of AzureOpenAI, try using AzureChatOpenAI.

    from langchain_openai import AzureChatOpenAI
    
    llm = AzureChatOpenAI(
        azure_deployment="name_of_your_deployment",  
        api_version="2024-05-01-preview", 
        temperature=0,
        max_tokens=None,
        # other params...
    )
    

    Details here: https://python.langchain.com/v0.2/docs/integrations/chat/azure_chat_openai/

    Login or Signup to reply.
Please signup or login to give your own answer.
Back To Top
Search