I am developing an application where there is a dashboard for data insights.
The backend is a set of microservices written in NodeJS express framework, with MySQL backend. The pattern used is the Database-Per-Service pattern, with a message broker in between.
The problem I am facing is, that I have this dashboard that derives data from multiple backend services(Different databases altogether, some are sql, some are nosql and some from graphDB)
I want to avoid multiple queries between front end and backend for this screen. However, I want to avoid a single point of failure as well. I have come up with the following solutions.
-
Use an API gateway aggregator/composition that makes multiple calls to backend services on behalf of a single frontend request, and then compose all the responses together and send it to the client. However, scaling even one server would require scaling of the gateway itself. Also, it makes the gateway a single point of contact.
-
Create a facade service, maybe called dashboard service, that issues calls to multiple services in the backend and then composes the responses together and sends a single payload back to the server. However, this creates a synchronous dependency.
I favor approach 2. However, I have a question there as well. Since the services are written in nodeJs, is there a way to enforce time-bound SLAs for each service, and if the service doesn’t respond to the facade aggregator, the client shall be returned partial, or cached data? Is there any mechanism for the same?
2
Answers
GraphQL has been designed for this.
You start by defining a global GraphQL schema that covers all the schemas of your microservices. Then you implement the fetchers, that will "populate" the response by querying the appropriate microservices. You can start several instances to do not have a single point of failure. You can return partial responses if you have a timeout (your answer will incluse resolver errors). GraphQL knows how to manage cache.
Honestly, it is a bit confusing at first, but once you got it, it is really simple to extend the schema and include new microservices into it.
I can’t answer on node’s technical implementation but indeed the second approach allows to model the query calls to remote services in a way that the answer is supposed to be received within some time boundary.
It depends on the way you interconnect between the services. The easiest approach is to spawn an http request from the aggregator service to the service that actually bring the data.
This http request can be set in a way that it won’t wait longer than X seconds for response. So you spawn multiple http requests to different services simultaneously and wait for response. I come from the java world, where these settings can be set at the level of http client making those connections, I’m sure node ecosystem has something similar…
If you prefer an asynchronous style of communication between the services, the situation is somewhat more complicated. In this case you can design some kind of ‘transactionId’ in the message protocol. So the requests from the aggregator service might include such a ‘transactionId’ (UUID might work) and “demand” that the answer will include just the same transactionId. Now the sends when sent the messages should wait for the response for the certain amount of time and then “quit waiting” after X seconds/milliseconds. All the responses that might come after that time will be discarded because no one is expected to handle them at the aggregator side.
BTW this “aggregator” approach also good / simple from the front end approach because it doesn’t have to deal with many requests to the backend as in the gateway approach, but only with one request. So I completely agree that the aggregator approach is better here.