My books(Artificial Intelligence A modern approach) says that Genetic algorithms begin with a set of k randomly generated states, called population. Each state is represented as a string over a finite alphabet- most commonly, a string of 0s and 1s. For eg, an 8-queens state must specify the positions of 8 queens, each in a column of 8 squares, and so requires 8 * log(2)8 = 24 bits. Alternatively the state could be represented as 8 digits, each in range from 1 to 8.
[ http://en.wikipedia.org/wiki/Eight_queens_puzzle ]I don’t understand the expression 8 * log(2)8 = 24 bits , why log2 ^ 8? And what are these 24 bits supposed to be for?
2
Answers
If we take first example on the wikipedia page, the solution can be encoded as [2,4,6,8,3,1,7,5] : the first digit gives the row number for the queen in column A, the second for the queen in column B and so on. Now instead of starting the row numbering at 1, we will start at 0. The solution is then encoded with [1,3,5,7,0,6,4]. Any position can be encoded such way.
We have only digits between 0 and 7, if we write them in binary 3 bit (=log2(8)) are enough :
A position can be encoded using 8 times 3 digits, e.g. from [1,3,5,7,2,0,6,4] we get [001,011,101,111,010,000,110,100] or more briefly 001011101111010000110100 : 24 bits.
In the other way, the bitstring 000010001011100101111110 decodes as 000.010.001.011.100.101.111.110 then [0,2,1,3,4,5,7,6] and gives [1,3,2,4,5,8,7] : queen in column A is on row 1, queen in column B is on row 3, etc.
The number of bits needed to store the possible squares (8 possibilities 0-7) is log(2)8. Note that 111 in binary is 7 in decimal. You have to specify the square for 8 columns, so you need 3 bits 8 times