skip to Main Content

within a UDF I want to read a delta table into a dataframe, based on its content update the row of the actual dataframe, on which the UDF is applied, and then update the delta table. I would use the UDF within a structured streaming foreachbatch. How is this possible?

df_other = spark.read.format("delta").load(path)

@udf(StringType())
def my_udf(df_other: DataFrame) -> str:
    ...
    # some things to do based on df_other's content.
    ...
    df_new_rows = ...
    df_new_rows.write.format("delta").mode("append").write(path)
    ...
    return "wathever"

2

Answers


  1. Use the following UDF to read and update the delta table:

    def read_and_process_delta_table(spark, table_path):
        # Define UDF to perform operations on DataFrame
        @udf(StringType())
        def my_combined_udf(name, age):
            # Perform operations based on name and age
            # Example: Concatenate name and age
            return f"{name}_{age}"
    
        # Read Delta table
        delta_df = spark.read.format("delta").load(table_path)
    
        # Apply combined UDF to DataFrame
        processed_df = delta_df.withColumn("processed_column", my_combined_udf(delta_df["name"], delta_df["age"]))
        processed_df.write.format("delta").mode("overwrite").option("mergeSchema", "true").save(table_path)
        return processed_df
    

    It will read and update the dataframe successfully, as shown below:

    Delta table:

    name age
    AA 25
    CC 35
    BB 30

    Updated delta table:

    name age processed_column
    AA 25 AA_25
    CC 35 CC_35
    BB 30 BB_30

    Here is the complete code for your reference:

    from pyspark.sql import SparkSession
    from pyspark.sql.functions import udf
    from pyspark.sql.types import StringType
    
    # Function to read Delta table
    def read_and_process_delta_table(spark, table_path):
        # Define UDF to perform operations on DataFrame
        @udf(StringType())
        def my_combined_udf(name, age):
            # Perform operations based on name and age
            # Example: Concatenate name and age
            return f"{name}_{age}"
    
        # Read Delta table
        delta_df = spark.read.format("delta").load(table_path)
    
        # Apply combined UDF to DataFrame
        processed_df = delta_df.withColumn("processed_column", my_combined_udf(delta_df["name"], delta_df["age"]))
        processed_df.write.format("delta").mode("overwrite").option("mergeSchema", "true").save(table_path)
        return processed_df
    
    # Usage
    spark = SparkSession.builder.appName("DeltaUDFExample").getOrCreate()
    table_path = "/mnt/files/delta_table"
    
    # Read and process Delta table
    result = read_and_process_delta_table(spark, table_path)
    
    # Show the result
    result.show()
    

    You can refer this to UDF within a structured streaming.

    Login or Signup to reply.
  2. from pyspark.sql import SparkSession
    from pyspark.sql.functions import udf
    from pyspark.sql.types import StringType
    # Initialize SparkSession
    spark = SparkSession.builder 
        .appName("MyApp") 
        .getOrCreate()
    
    # Load data from Delta Lake format
    df_other = spark.read.format("delta").load(path)
    
    # Define UDF
    @udf(StringType())
    def my_udf(df_other_json):
        # Here you can access df_other's content and perform operations
        # Note: You might need to adjust this function based on what you want to do with df_other
        # For example, if df_other is a DataFrame, you can't directly pass it as a parameter to a UDF.
        # You can consider converting it to JSON or any other suitable format for your use case.
        
        # some things to do based on df_other's content.
        # For demonstration purposes, let's assume we're just converting it to JSON here.
        df_other_json = df_other.toJSON().collect()
    
        # Do something with df_other_json
        
        # Assuming df_new_rows is computed based on df_other's content
        df_new_rows = ...  # Some processing to generate new DataFrame rows
        
        # Write new rows to Delta Lake
        df_new_rows.write.format("delta").mode("append").save(path)
        
        return "whatever"
    
    # Register UDF
    spark.udf.register("my_udf", my_udf)
    
    # Now you can use this UDF in your Spark DataFrame operations
    # For example:
    # df_with_udf = df_other.withColumn("result", my_udf(df_other["column_name"]))
    
    # Stop SparkSession
    spark.stop()
    
    Login or Signup to reply.
Please signup or login to give your own answer.
Back To Top
Search