I have two client codes to pick the audio and stream it to server through websocket, One is using ScriptProcessor and another one through MediaRecorder functions in Javascript, The task in the server is to pick this audio chunks and send it to azure realtime speech-to-text API for transcription and diarization.
The problem I face is that the client code with ScriptProcessor works fine and we get the transcriptions perfectly but it seems ScriptProcessor does put heavy work on CPUs of the machine. So, We decided to move on with it and tried with MediaRecorder but, Here the transcriptions are always None or no transcriptions happening.
I have provided two of client snippets and also a minimal server code to reproduce the issue, The one difference I notice between these client codes, ScriptProcessors cuts using bytesizes whereas Mediarecorder cuts as times in milliseconds.
Any help would be appreciated
Working Client Code with ScriptProcessor
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Audio Streaming Client</title>
</head>
<body>
<h1>Audio Streaming Client</h1>
<button id="startButton">Start Streaming</button>
<button id="stopButton" disabled>Stop Streaming</button>
<script>
let audioContext;
let mediaStream;
let source;
let processor;
let socket;
const startButton = document.getElementById('startButton');
const stopButton = document.getElementById('stopButton');
startButton.addEventListener('click', async () => {
startButton.disabled =[enter image description here](https://i.sstatic.net/JvYNS2C9.png) true;
stopButton.disabled = false;
// Initialize WebSocket
socket = new WebSocket('ws://localhost:8000');
socket.onopen = async () => {
// Create an AudioContext with a specific sample rate
audioContext = new (window.AudioContext || window.webkitAudioContext)();
// Get access to the microphone
mediaStream = await navigator.mediaDevices.getUserMedia({ audio: true });
// Create a MediaStreamSource from the microphone input
source = audioContext.createMediaStreamSource(mediaStream);
// Create a ScriptProcessorNode with a buffer size of 4096, one input and one output channel
processor = audioContext.createScriptProcessor(1024, 1, 1);
// Connect the microphone source to the processor node
source.connect(processor);
// Handle audio processing and send the data through WebSocket
processor.onaudioprocess = function (e) {
// const inputData = e.inputBuffer.getChannelData(0);
// const outputData = new Int16Array(inputData.length);
// // Convert Float32Array to Int16Array
// for (let i = 0; i < inputData.length; i++) {
// outputData[i] = Math.min(1, Math.max(-1, inputData[i])) * 0x7FFF;
// }
if (socket.readyState === WebSocket.OPEN) {
socket.send(e.inputBuffer.getChannelData(0));
}
};
// Connect the processor node to the destination (optional, for monitoring)
processor.connect(audioContext.destination);
};
socket.onerror = function (error) {
console.error('WebSocket Error: ', error);
};
});
stopButton.addEventListener('click', () => {
stopButton.disabled = true;
startButton.disabled = false;
if (processor) {
processor.disconnect();
}
if (source) {
source.disconnect();
}
if (audioContext) {
audioContext.close();
}
if (socket) {
socket.close();
}
if (mediaStream) {
mediaStream.getTracks().forEach(track => track.stop());
}
});
</script>
</body>
</html>
Not working client code with mediarecorder
const connectButton = document.getElementById("connectButton");
const startButton = document.getElementById("startButton");
const stopButton = document.getElementById("stopButton");
let mediaRecorder;
let socket;
connectButton.addEventListener("click", () => {
socket = new WebSocket("ws://localhost:8000");
socket.addEventListener("open", () => {
console.log("Connected to server");
connectButton.disabled = true;
startButton.disabled = false;
});
socket.addEventListener("close", () => {
console.log("Disconnected from server");
connectButton.disabled = false;
startButton.disabled = true;
stopButton.disabled = true;
});
});
startButton.addEventListener("click", async () => {
const stream = await navigator.mediaDevices.getUserMedia({ audio: true });
mediaRecorder = new MediaRecorder(stream);
mediaRecorder.ondataavailable = (event) => {
if (event.data.size > 0 && socket && socket.readyState === WebSocket.OPEN) {
socket.send(event.data);
console.log("audio sent");
}
};
mediaRecorder.start(100); // Collect audio in chunks of 100ms
startButton.disabled = true;
stopButton.disabled = false;
});
stopButton.addEventListener("click", () => {
if (mediaRecorder) {
mediaRecorder.stop();
}
if (socket) {
socket.close();
}
startButton.disabled = false;
stopButton.disabled = true;
});
Simple Server code with all downsampling and preprocessing functions
import asyncio
import websockets
import os
import datetime
import soxr
import numpy as np
from pydub import AudioSegment
from io import BytesIO
from scipy.io.wavfile import write
from scipy.signal import resample
import azure.cognitiveservices.speech as speechsdk
from dotenv import load_dotenv
load_dotenv()
speech_key = os.getenv("SPEECH_KEY")
speech_region = os.getenv("SPEECH_REGION")
write_stream = None
buffer = None
write_stream_sampled = None
def downsample_audio(byte_chunk, original_rate, target_rate, num_channels=1):
"""
Downsample an audio byte chunk.
Args:
byte_chunk (bytes): Audio data in bytes format.
original_rate (int): Original sample rate of the audio.
target_rate (int): Target sample rate after downsampling.
num_channels (int): Number of audio channels (1 for mono, 2 for stereo).
Returns:
bytes: Downsampled audio data in bytes.
"""
audio_data = np.frombuffer(byte_chunk, dtype=np.int16)
if num_channels == 2:
# Reshape for stereo
audio_data = audio_data.reshape(-1, 2)
# Calculate the number of samples in the downsampled audio
num_samples = int(len(audio_data) * target_rate / original_rate)
# Downsample the audio
downsampled_audio = resample(audio_data, num_samples)
# Ensure the data is in int16 format
downsampled_audio = np.round(downsampled_audio).astype(np.int16)
# Convert back to bytes
downsampled_bytes = downsampled_audio.tobytes()
return downsampled_bytes
def setup_azure_service():
speech_config = speechsdk.SpeechConfig(
subscription=speech_key,
region=speech_region,
)
# azure service logging to find cancellation issues
speech_config.set_property(
speechsdk.PropertyId.Speech_LogFilename, "azure_speech_sdk.log"
)
speech_config.enable_audio_logging()
speech_config.set_property(
property_id=speechsdk.PropertyId.SpeechServiceConnection_LanguageIdMode,
value="Continuous",
)
speech_config.set_property_by_name("maxSpeakerCount", str(8))
speech_config.request_word_level_timestamps()
auto_detect_lang_config = speechsdk.AutoDetectSourceLanguageConfig(
languages=["en-US", "es-ES"]
)
audio_stream_format = speechsdk.audio.AudioStreamFormat(
samples_per_second=16000
)
push_stream = speechsdk.audio.PushAudioInputStream(
stream_format=audio_stream_format
)
audio_config = speechsdk.audio.AudioConfig(stream=push_stream)
transcriber = speechsdk.transcription.ConversationTranscriber(
speech_config=speech_config,
audio_config=audio_config,
auto_detect_source_language_config=auto_detect_lang_config
)
def start_callback(evt):
print("Session started")
def transcribed(evt):
if evt.result.reason == speechsdk.ResultReason.RecognizedSpeech:
det_lang = evt.result.properties[
speechsdk.PropertyId.SpeechServiceConnection_AutoDetectSourceLanguageResult
]
transcribed_text = evt.result.text
speaker_id = evt.result.speaker_id
print(f"Language: {det_lang}")
print("tText={}".format(transcribed_text))
print("tSpeaker ID={}".format(speaker_id))
transcriber.session_started.connect(start_callback)
transcriber.transcribed.connect(transcribed)
return transcriber, push_stream
async def handle_client_connection(websocket, path):
global write_stream
global buffer
global write_stream_sampled
print("Client connected")
transcriber, push_stream = setup_azure_service()
transcriber.start_transcribing_async().get()
try:
async for message in websocket:
if buffer is None:
buffer = b""
if write_stream is None:
write_stream = open("output.webm", "ab")
if write_stream_sampled is None:
write_stream_sampled = open("output_sampled.webm", "ab")
if isinstance(message, bytes):
buffer += message
print(type(buffer))
while len(buffer) >= 4096:
audio_chunk = buffer[:4096]
buffer = buffer[4096:]
print(f"Audio chunk of size: {len(audio_chunk)} received")
push_stream.write(audio_chunk)
# print("audio received")
# if write_stream is None:
# write_stream = open(
# "output.webm", "ab"
# ) # 'ab' mode to append in binary
# if isinstance(message, bytes):
# write_stream.write(message)
# else:
# print("Received non-binary message")
except websockets.ConnectionClosed:
print("Client disconnected")
finally:
if write_stream:
write_stream.close()
write_stream = None
transcriber.stop_transcribing_async().get()
async def start_server():
server = await websockets.serve(handle_client_connection, "127.0.0.1", 8000)
print("Server is running on port 8000")
await server.wait_closed()
if __name__ == "__main__":
print(datetime.datetime.utcnow().strftime("%Y-%m-%d %H:%M:%S"))
asyncio.get_event_loop().run_until_complete(start_server())
asyncio.get_event_loop().run_forever()
Expected Output
enter image description here
2
Answers
After a lots of trial and error, I found that we need not write any gstreamer code explicitly. We just have to install the gstreamer library in the system or server where you are hosting your service. Azure internally converts any audio format to PCM format.
URL: https://learn.microsoft.com/en-us/azure/ai-services/speech-service/how-to-use-codec-compressed-audio-input-streams?tabs=linux%2Cdebian%2Cjava-android%2Cterminal&pivots=programming-language-python
GStreamer is to stream audio to a WebSocket server for real-time transcription (like with Azure speech-to-text) can be a strong solution.
server.py:
Get the key and location from the azure portal as shown in below.
Console Output:
Updated