According to the Java documentation for String.length:
public int length()
Returns the length of this string.
The length is equal to the number of Unicode code units in the string.
Specified by:
length in interface CharSequence
Returns:
the length of the sequence
of characters represented by this object.
But then I don’t understand why the following program, HelloUnicode.java, produces different results on different platforms. According to my understanding, the number of Unicode code units should be the same, since Java supposedly always represents strings in UTF-16:
public class HelloWorld {
public static void main(String[] args) {
String myString = "I have a 🙂 in my string";
System.out.println("String: " + myString);
System.out.println("Bytes: " + bytesToHex(myString.getBytes()));
System.out.println("String Length: " + myString.length());
System.out.println("Byte Length: " + myString.getBytes().length);
System.out.println("Substring 9 - 13: " + myString.substring(9, 13));
System.out.println("Substring Bytes: " + bytesToHex(myString.substring(9, 13).getBytes()));
}
// Code from https://stackoverflow.com/a/9855338/4019986
private final static char[] hexArray = "0123456789ABCDEF".toCharArray();
public static String bytesToHex(byte[] bytes) {
char[] hexChars = new char[bytes.length * 2];
for ( int j = 0; j < bytes.length; j++ ) {
int v = bytes[j] & 0xFF;
hexChars[j * 2] = hexArray[v >>> 4];
hexChars[j * 2 + 1] = hexArray[v & 0x0F];
}
return new String(hexChars);
}
}
The output of this program on my Windows box is:
String: I have a 🙂 in my string
Bytes: 492068617665206120F09F998220696E206D7920737472696E67
String Length: 26
Byte Length: 26
Substring 9 - 13: 🙂
Substring Bytes: F09F9982
The output on my CentOS 7 machine is:
String: I have a 🙂 in my string
Bytes: 492068617665206120F09F998220696E206D7920737472696E67
String Length: 24
Byte Length: 26
Substring 9 - 13: 🙂 i
Substring Bytes: F09F99822069
I ran both with Java 1.8. Same byte length, different String length. Why?
UPDATE
By replacing the “🙂” in the string with “uD83DuDE42”, I get the following results:
Windows:
String: I have a ? in my string
Bytes: 4920686176652061203F20696E206D7920737472696E67
String Length: 24
Byte Length: 23
Substring 9 - 13: ? i
Substring Bytes: 3F2069
CentOS:
String: I have a 🙂 in my string
Bytes: 492068617665206120F09F998220696E206D7920737472696E67
String Length: 24
Byte Length: 26
Substring 9 - 13: 🙂 i
Substring Bytes: F09F99822069
Why “uD83DuDE42” ends up being encoded as 0x3F on the Windows machine is beyond me…
Java Versions:
Windows:
java version "1.8.0_211"
Java(TM) SE Runtime Environment (build 1.8.0_211-b12)
Java HotSpot(TM) 64-Bit Server VM (build 25.211-b12, mixed mode)
CentOS:
openjdk version "1.8.0_201"
OpenJDK Runtime Environment (build 1.8.0_201-b09)
OpenJDK 64-Bit Server VM (build 25.201-b09, mixed mode)
Update 2
Using .getBytes("utf-8")
, with the “🙂” embedded in the string literal, here are the outputs.
Windows:
String: I have a 🙂 in my string
Bytes: 492068617665206120C3B0C5B8E284A2E2809A20696E206D7920737472696E67
String Length: 26
Byte Length: 32
Substring 9 - 13: 🙂
Substring Bytes: C3B0C5B8E284A2E2809A
CentOS:
String: I have a 🙂 in my string
Bytes: 492068617665206120F09F998220696E206D7920737472696E67
String Length: 24
Byte Length: 26
Substring 9 - 13: 🙂 i
Substring Bytes: F09F99822069
So yes it appears to be a difference in system encoding. But then that means string literals are encoded differently on different platforms? That sounds like it could be problematic in certain situations.
Also… where is the byte sequence C3B0C5B8E284A2E2809A
coming from to represent the smiley in Windows? That doesn’t make sense to me.
For completeness, using .getBytes("utf-16")
, with the “🙂” embedded in the string literal, here are the outputs.
Windows:
String: I have a 🙂 in my string
Bytes: FEFF00490020006800610076006500200061002000F001782122201A00200069006E0020006D007900200073007400720069006E0067
String Length: 26
Byte Length: 54
Substring 9 - 13: 🙂
Substring Bytes: FEFF00F001782122201A
CentOS:
String: I have a 🙂 in my string
Bytes: FEFF004900200068006100760065002000610020D83DDE4200200069006E0020006D007900200073007400720069006E0067
String Length: 24
Byte Length: 50
Substring 9 - 13: 🙂 i
Substring Bytes: FEFFD83DDE4200200069
2
Answers
You didn’t take into account, that getBytes() returns the bytes in the platform’s default encoding. This is different on windows and centOS.
See also How to Find the Default Charset/Encoding in Java? and the API documentation on String.getBytes().
You have to be careful about specifying the encodings:
getBytes()
and that again uses the environment or platform-specific encoding. So it was also broken (replacing unencodable smilies with question mark). You need to callgetBytes("UTF-8")
to be platform-independent.So to answer the specific questions posed:
Because the string literal is being encoded by the java compiler, and the java compiler often uses a different encoding on different systems by default. This may result in a different number of character units per Unicode character, which results in a different string length. Passing the
-encoding
command line option with the same option across platforms will make them encode consistently.It’s not encoded as 0x3F in the string. 0x3f is the question mark. Java puts this in when it is asked to output invalid characters via
System.out.println
orgetBytes
, which was the case when you encoded literal UTF-16 representations in a string with a different encoding and then tried to print it to the console andgetBytes
from it.By default, yes.
This is quite convoluted. The “🙂” character (Unicode code point U+1F642) is stored in the Java source file with UTF-8 encoding using the byte sequence F0 9F 99 82. The Java compiler then reads the source file using the platform default encoding, Cp1252 (Windows-1252), so it treats these UTF-8 bytes as though they were Cp1252 characters, making a 4-character string by translating each byte from Cp1252 to Unicode, resulting in U+00F0 U+0178 U+2122 U+201A. The
getBytes("utf-8")
call then converts this 4-character string into bytes by encoding them as utf-8. Since every character of the string is higher than hex 7F, each character is converted into 2 or more UTF-8 bytes; hence the resulting string being this long. The value of this string is not significant; it’s just the result of using an incorrect encoding.