skip to Main Content

I was trying to see if there’s a way to change the color of some specific parts of an image without overriding the texture of it for example there’s a picture of a wooden table and I want to change the color of the top by a button without it losing the texture or affecting the other parts of the picture I tried using filters but that changed the entire picture, any help would be appreciated.

the example image:

enter image description here
one of the images is this and I want to change the color to red when clicked without changing the texture and making it all the same tone without any difference

2

Answers


  1. I suggest experimenting with globalCompositeOperation

    const img = document.querySelector('img')
    img.onload = () => {
      const canvas = document.querySelector('canvas')
      const ctx = canvas.getContext('2d')
    
      canvas.width = img.naturalWidth
      canvas.height = img.naturalHeight
    
      ctx.fillStyle = 'pink'
      ctx.drawImage(img, 0, 0)
      ctx.globalCompositeOperation = 'color'
      ctx.fillRect(0, 0, canvas.width, canvas.height)
    }
    <img hidden src="https://i.stack.imgur.com/hkkeK.png">
    <canvas></canvas>
    Login or Signup to reply.
  2. A fast way would be manipulate pixels manually. So the steps:

    • get ImageData of the canvas with getImageData().
    • create another ImageData with the same dimensions, let’s call it transformed.
    • loop through pixes and if the alpha isn’t 0 (transparent) then convert the pixel from the source ImageData to HSL, set it hue to 1 (red) and convert back to RGB and set this converted pixel to the transformed‘s data
    • when done, draw the transformed on the canvas with putImageData():
    const img = document.querySelector('img')
    
    const canvas = document.querySelector('canvas')
    const ctx = canvas.getContext('2d')
    
    img.onload = () =>{
        canvas.width = img.naturalWidth
        canvas.height = img.naturalHeight
    
        ctx.drawImage(img, 0, 0)
    };
    
    canvas.addEventListener('click', () => {
    
        const image = ctx.getImageData(0, 0, canvas.width, canvas.height);
        const { data } = image;
    
        const transformed = ctx.createImageData(image);
        const newdata = transformed.data;
    
        let idx = 3;
        while (idx < data.length) {
            if (data[idx]) {
                const hsl = rgbToHsl(data[idx - 3], data[idx - 2], data[idx - 1]);
                hsl[0] = 1;
                const rgb = hslToRgb(...hsl);
                newdata[idx - 3] = rgb[0];
                newdata[idx - 2] = rgb[1];
                newdata[idx - 1] = rgb[2];
                newdata[idx] = data[idx];
            }
            idx += 4;
        }
    
        ctx.putImageData(transformed, 0, 0);
    });
    
    // taken from https://gist.github.com/emanuel-sanabria-developer/5793377
    
    function rgbToHsl(r, g, b) {
        r /= 255, g /= 255, b /= 255;
        var max = Math.max(r, g, b), min = Math.min(r, g, b);
        var h, s, l = (max + min) / 2;
    
        if (max == min) {
            h = s = 0; // achromatic
        } else {
            var d = max - min;
            s = l > 0.5 ? d / (2 - max - min) : d / (max + min);
            switch (max) {
                case r: h = (g - b) / d + (g < b ? 6 : 0); break;
                case g: h = (b - r) / d + 2; break;
                case b: h = (r - g) / d + 4; break;
            }
            h /= 6;
        }
    
        return [h, s, l];
    }
    
    function hslToRgb(h, s, l) {
        var r, g, b;
    
        if (s == 0) {
            r = g = b = l; // achromatic
        } else {
            function hue2rgb(p, q, t) {
                if (t < 0) t += 1;
                if (t > 1) t -= 1;
                if (t < 1 / 6) return p + (q - p) * 6 * t;
                if (t < 1 / 2) return q;
                if (t < 2 / 3) return p + (q - p) * (2 / 3 - t) * 6;
                return p;
            }
    
            var q = l < 0.5 ? l * (1 + s) : l + s - l * s;
            var p = 2 * l - q;
            r = hue2rgb(p, q, h + 1 / 3);
            g = hue2rgb(p, q, h);
            b = hue2rgb(p, q, h - 1 / 3);
        }
    
        return [r * 255, g * 255, b * 255];
    }
    <div>Click the image:</div>
    <canvas style="cursor:pointer"></canvas>
    <img hidden src="">
    Login or Signup to reply.
Please signup or login to give your own answer.
Back To Top
Search