skip to Main Content

I get the error ValueError: Input contains NaN, when I try to predict the next value of series by using ARIMA model from pmdarima.

But the data I use didn’t contains null values.

codes:

from pmdarima.arima import ARIMA
tmp_series = pd.Series([0.8867208063423082, 0.4969678051201152, -0.35079875681211814, 0.07156197743204402, 0.6888394890593726, 0.6136916470350972, 0.9020102952782968, 0.38539523911177426, -0.02211092685162178, 0.7051282791422511, -0.21841121961990842, 0.003262841037836234, 0.3970253153400027, 0.8187445259415379, -0.525847439014037, 0.3039480910711944, 0.0279240073596233, 0.8238419467739897, 0.8234157376839023, 0.5897892005398399, 0.8333118174945449])
model_211 = ARIMA(order=(2, 1, 1), out_of_sample_size=0, mle_regression=True, suppress_warnings=True)
model_211.fit(tmp_series[:-1])
print(model_211.predict())

error message:

---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
Input In [7], in <cell line: 7>()
      5 display(model_211.params())
      6 display(model_211.aic())
----> 7 display(model_211.predict())

File /usr/local/lib/python3.8/dist-packages/pmdarima/arima/arima.py:793, in ARIMA.predict(self, n_periods, X, return_conf_int, alpha, **kwargs)
    790 arima = self.arima_res_
    791 end = arima.nobs + n_periods - 1
--> 793 f, conf_int = _seasonal_prediction_with_confidence(
    794     arima_res=arima,
    795     start=arima.nobs,
    796     end=end,
    797     X=X,
    798     alpha=alpha)
    800 if return_conf_int:
    801     # The confidence intervals may be a Pandas frame if it comes from
    802     # SARIMAX & we want Numpy. We will to duck type it so we don't add
    803     # new explicit requirements for the package
    804     return f, check_array(conf_int, force_all_finite=False)

File /usr/local/lib/python3.8/dist-packages/pmdarima/arima/arima.py:205, in _seasonal_prediction_with_confidence(arima_res, start, end, X, alpha, **kwargs)
    202     conf_int[:, 1] = f + q * np.sqrt(var)
    204 y_pred = check_endog(f, dtype=None, copy=False, preserve_series=True)
--> 205 conf_int = check_array(conf_int, copy=False, dtype=None)
    207 return y_pred, conf_int

File /usr/local/lib/python3.8/dist-packages/sklearn/utils/validation.py:899, in check_array(array, accept_sparse, accept_large_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, ensure_min_samples, ensure_min_features, estimator, input_name)
    893         raise ValueError(
    894             "Found array with dim %d. %s expected <= 2."
    895             % (array.ndim, estimator_name)
    896         )
    898     if force_all_finite:
--> 899         _assert_all_finite(
    900             array,
    901             input_name=input_name,
    902             estimator_name=estimator_name,
    903             allow_nan=force_all_finite == "allow-nan",
    904         )
    906 if ensure_min_samples > 0:
    907     n_samples = _num_samples(array)

File /usr/local/lib/python3.8/dist-packages/sklearn/utils/validation.py:146, in _assert_all_finite(X, allow_nan, msg_dtype, estimator_name, input_name)
    124         if (
    125             not allow_nan
    126             and estimator_name
   (...)
    130             # Improve the error message on how to handle missing values in
    131             # scikit-learn.
    132             msg_err += (
    133                 f"n{estimator_name} does not accept missing values"
    134                 " encoded as NaN natively. For supervised learning, you might want"
   (...)
    144                 "#estimators-that-handle-nan-values"
    145             )
--> 146         raise ValueError(msg_err)
    148 # for object dtype data, we only check for NaNs (GH-13254)
    149 elif X.dtype == np.dtype("object") and not allow_nan:

ValueError: Input contains NaN.

So, I have two questions:

  1. Is there any parameters I should set, in order to avoid this error?

  2. I found out the similar problem: Failing to predict next value using ARIMA: Input contains NaN, infinity or a value too large for dtype('float64'). In the comment of this post says : It’s caused by a unsolved issue.

    I’m not sure if this error is also caused by the same issue. If so, is there any suggestion of other package of ARIMA model?


Environment Information:

  • I perform this code in a docker container
    • OS info:
      Distributor ID: Ubuntu
      Description:    Ubuntu 20.04.4 LTS
      Release:        20.04
      Codename:       focal
      
    • python env info:
      Python 3.8.10
      
    • pip package info (I only list related package, I put complete pip package list in here):
      Package                      Version                                                                            
      ---------------------------- --------------------                                                                        
      numpy                        1.22.4
      pandas                       1.4.3 
      pmdarima                     2.0.1   
      scikit-learn                 1.1.1                           
      scipy                        1.8.1
      statsmodels                  0.13.2 
      

2

Answers


  1. Chosen as BEST ANSWER

    Downgrading the following packages will resolve this error:

    numpy==1.19.3
    pandas==1.3.3
    pmdarima==1.8.3
    

  2. What environment do you work in?
    your code print(work):

    20 0.316942
    21 0.338248
    22 0.378482…

    Login or Signup to reply.
Please signup or login to give your own answer.
Back To Top
Search