skip to Main Content

I am using NumPy 1.24.0.

On running this sample code line,

import numpy as np
num = np.float(3)

I am getting this error:

Traceback (most recent call last):   File "<stdin>", line 1, in <module>   File "/home/ubuntu/.local/lib/python3.8/site-packages/numpy/__init__.py", line 284, in __getattr__
    raise AttributeError("module {!r} has no attribute " AttributeError: module 'numpy' has no attribute 'float'

How can I fix it?

6

Answers


  1. I removed numpy.py and then updated my NumPy installation. It worked!

    Note: NumPy version 1.23.3

    Login or Signup to reply.
  2. The answer is already provided in the comments by @mattdmo and @tdelaney:

    • NumPy 1.20 (release notes) deprecated numpy.float, numpy.int, and similar aliases, causing them to issue a deprecation warning

    • NumPy 1.24 (release notes) removed these aliases altogether, causing an error when they are used

    In many cases you can simply replace the deprecated NumPy types by the equivalent Python built-in type, e.g., numpy.float becomes a "plain" Python float.

    For detailed guidelines on how to deal with various deprecated types, have a closer look at the table and guideline in the release notes for 1.20:

    To give a clear guideline for the vast majority of cases, for the types bool, object, str (and unicode) using the plain version is shorter and clear, and generally a good replacement. For float and complex you can use float64 and complex128 if you wish to be more explicit about the precision.

    For np.int a direct replacement with np.int_ or int is also good and will not change behavior, but the precision will continue to depend on the computer and operating system. If you want to be more explicit and review the current use, you have the following alternatives:

    • np.int64 or np.int32 to specify the precision exactly. This ensures that results cannot depend on the computer or operating system.
    • np.int_ or int (the default), but be aware that it depends on the computer and operating system.
    • The C types: np.cint (int), np.int_ (long), np.longlong.
    • np.intp which is 32bit on 32bit machines 64bit on 64bit machines. This can be the best type to use for indexing.

    If you have dependencies that use the deprecated types, a quick workaround would be to roll back your NumPy version to 1.24 or less (as suggested in some of the other answers), while waiting for the dependency to catch up. Alternatively, you could create a patch yourself and open a pull request, or monkey patch the dependency in your own code.

    Login or Signup to reply.
  3. In the 1.24 version:

    The deprecation for the aliases np.object, np.bool, np.float, np.complex, np.str, and np.int is expired (introduces NumPy 1.20). Some of these will now give a FutureWarning in addition to raising an error since they will be mapped to the NumPy scalars in the future.

    pip install "numpy<1.24" to work around it.

    In [1]: import numpy as np
    
    In [2]: np.__version__
    Out[2]: '1.23.5'
    
    In [3]: np.float(3)
    <ipython-input-3-8262e04d58e1>:1: DeprecationWarning: `np.float` is a deprecated alias for the builtin `float`. To silence this warning, use `float` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.float64` here.
    Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
      np.float(3)
    Out[3]: 3.0
    
    Login or Signup to reply.
  4. I solved by updating my "openpyxl" using

    {pip install --upgrade openpyxl}
    

    The error came up while trying to read an excel file

    Login or Signup to reply.
  5. I faced the same issue when I was reading a .xlsx file. You can convert it to csv and this will resolve the issue. However for updating numpy some times you need to get the directory of numpy package:

    import numpy
    print(numpy.__path__)
    

    For updating it you can use the code below:

    pip install numpy --upgrade
    

    You can also check this page:
    How can I upgrade NumPy?

    Login or Signup to reply.
  6. Try to use simple "monkey path". Add line like

    np.float = float    
    

    or

    np.int = int    
    

    in case module ‘numpy’ has no attribute ‘int’

    np.object = object    
    

    module ‘numpy’ has no attribute ‘object’

    np.bool = bool    
    

    and so on… (if problem with last Numpy versions)

    Login or Signup to reply.
Please signup or login to give your own answer.
Back To Top
Search