I am running a deep learning project at https://github.com/hyangwinter/flownet3d_pytorch. There are some problems during operation, and I don’t know how to solve them.
The error is as follows:
Namespace(batch_size=64, cycle=False, dataset='SceneflowDataset', dataset_path='data/data_processed_maxcut_35_20k_2k_8192/', dropout=0.5, emb_dims=512, epochs=250, eval=False, exp_name='flownet3d', gaussian_noise=False, lr=0.001, model='flownet', model_path='', momentum=0.9, no_cuda=False, num_points=2048, seed=1234, test_batch_size=32, unseen=False, use_sgd=False)
train : 20006
test : 2007
Traceback (most recent call last):
File "main.py", line 282, in <module>
main()
File "main.py", line 254, in main
net = FlowNet3D(args).cuda()
File "/home/ubuntu/project/flownet3d_pytorch/model.py", line 13, in __init__
self.sa1 = PointNetSetAbstraction(npoint=1024, radius=0.5, nsample=16, in_channel=3, mlp=[32,32,64], group_all=False)
File "/home/ubuntu/project/flownet3d_pytorch/util.py", line 225, in __init__
for out_channel in mlp2:
TypeError: 'NoneType' object is not iterable`
My code:
class FlowNet3D(nn.Module):
def __init__(self,args):
super(FlowNet3D,self).__init__()
self.sa1 = PointNetSetAbstraction(npoint=1024, radius=0.5, nsample=16, in_channel=3, mlp=[32,32,64], group_all=False)
self.sa2 = PointNetSetAbstraction(npoint=256, radius=1.0, nsample=16, in_channel=64, mlp=[64, 64, 128], group_all=False)
self.sa3 = PointNetSetAbstraction(npoint=64, radius=2.0, nsample=8, in_channel=128, mlp=[128, 128, 256], group_all=False)
self.sa4 = PointNetSetAbstraction(npoint=16, radius=4.0, nsample=8, in_channel=256, mlp=[256,256,512], group_all=False)
self.fe_layer = FlowEmbedding(radius=10.0, nsample=64, in_channel = 128, mlp=[128, 128, 128], pooling='max', corr_func='concat')
self.su1 = PointNetSetUpConv(nsample=8, radius=2.4, f1_channel = 256, f2_channel = 512, mlp=[], mlp2=[256, 256])
self.su2 = PointNetSetUpConv(nsample=8, radius=1.2, f1_channel = 128+128, f2_channel = 256, mlp=[128, 128, 256], mlp2=[256])
self.su3 = PointNetSetUpConv(nsample=8, radius=0.6, f1_channel = 64, f2_channel = 256, mlp=[128, 128, 256], mlp2=[256])
self.fp = PointNetFeaturePropogation(in_channel = 256+3, mlp = [256, 256])
self.conv1 = nn.Conv1d(256, 128, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm1d(128)
self.conv2=nn.Conv1d(128, 3, kernel_size=1, bias=True)
def forward(self, pc1, pc2, feature1, feature2):
l1_pc1, l1_feature1 = self.sa1(pc1, feature1)
l2_pc1, l2_feature1 = self.sa2(l1_pc1, l1_feature1)
l1_pc2, l1_feature2 = self.sa1(pc2, feature2)
l2_pc2, l2_feature2 = self.sa2(l1_pc2, l1_feature2)
_, l2_feature1_new = self.fe_layer(l2_pc1, l2_pc2, l2_feature1, l2_feature2)
l3_pc1, l3_feature1 = self.sa3(l2_pc1, l2_feature1_new)
l4_pc1, l4_feature1 = self.sa4(l3_pc1, l3_feature1)
l3_fnew1 = self.su1(l3_pc1, l4_pc1, l3_feature1, l4_feature1)
l2_fnew1 = self.su2(l2_pc1, l3_pc1, torch.cat([l2_feature1, l2_feature1_new], dim=1), l3_fnew1)
l1_fnew1 = self.su3(l1_pc1, l2_pc1, l1_feature1, l2_fnew1)
l0_fnew1 = self.fp(pc1, l1_pc1, feature1, l1_fnew1)
x = F.relu(self.bn1(self.conv1(l0_fnew1)))
sf = self.conv2(x)
return sf
class PointNetSetAbstraction(nn.Module):
def __init__(self, npoint, radius, nsample, in_channel, mlp, mlp2 = None, group_all = False):
super(PointNetSetAbstraction, self).__init__()
self.npoint = npoint
self.radius = radius
self.nsample = nsample
self.group_all = group_all
self.mlp_convs = nn.ModuleList()
self.mlp_bns = nn.ModuleList()
self.mlp2_convs = nn.ModuleList()
last_channel = in_channel+3
for out_channel in mlp:
self.mlp_convs.append(nn.Conv2d(last_channel, out_channel, 1, bias = False))
self.mlp_bns.append(nn.BatchNorm2d(out_channel))
last_channel = out_channel
for out_channel in mlp2:
self.mlp2_convs.append(nn.Sequential(nn.Conv1d(last_channel, out_channel, 1, bias=False),
nn.BatchNorm1d(out_channel)))
last_channel = out_channel
if group_all:
self.queryandgroup = pointutils.GroupAll()
else:
self.queryandgroup = pointutils.QueryAndGroup(radius, nsample)
def forward(self, xyz, points):
"""
Input:
xyz: input points position data, [B, C, N]
points: input points data, [B, D, N]
Return:
new_xyz: sampled points position data, [B, S, C]
new_points_concat: sample points feature data, [B, S, D']
"""
device = xyz.device
B, C, N = xyz.shape
xyz_t = xyz.permute(0, 2, 1).contiguous()
# if points is not None:
# points = points.permute(0, 2, 1).contiguous()
if self.group_all == False:
fps_idx = pointutils.furthest_point_sample(xyz_t, self.npoint) # [B, N]
new_xyz = pointutils.gather_operation(xyz, fps_idx) # [B, C, N]
else:
new_xyz = xyz
new_points = self.queryandgroup(xyz_t, new_xyz.transpose(2, 1).contiguous(), points) # [B, 3+C, N, S]
# new_xyz: sampled points position data, [B, C, npoint]
# new_points: sampled points data, [B, C+D, npoint, nsample]
for i, conv in enumerate(self.mlp_convs):
bn = self.mlp_bns[i]
new_points = F.relu(bn(conv(new_points)))
new_points = torch.max(new_points, -1)[0]
for i, conv in enumerate(self.mlp2_convs):
new_points = F.relu(conv(new_points))
return new_xyz, new_points`
I noticed that the mlp2 parameter is set to NONE but I don’t know how to solve it. In the source code implementation, this parameter is also NONE
2
Answers
Since your
self.sa1
do not have parameters namedmlp2
, it will use the default one,None
as you defined inAnd of cause
None
is not iterable, to solve this, you can just add aif
-condition before thefor
-loop. Otherwise, you can also just passmlp2=[]
as you already done forself.su1
.As you pointed out in your question,
mlp2
is set toNone
in the function call. When trying to iterate overmlp2
withthe code corectly throws a
TypeError
.It is hard to understand what you are trying to do, especially because
mlp2
is not a good variable name (what even should that be?). From the context of your code I would assume thatmpl2
is a list that holds the sizes of your layers. You might try something like:This will initialize the Model to have layers of size 16 (if the rest of the code is working).