What I am trying to achieve is similar to photoshop/gimp’s eyedropper tool: take a round sample of a given area in an image and return the average colour of that circular sample.
The simplest method I have found is to take a ‘regular’ square sample, mask it as a circle, then reduce it to 1 pixel, but this is very CPU-demanding (especially when repeated millions of times).
A more mathematically complex method is to take a square area and average only the pixels that fall within a circular area within that sample, but determining what pixel is or isn’t within that circle, repeated, is CPU-demanding as well.
Is there a more succinct, less-CPU-demanding means to achieve this?
2
Answers
I'm sure that there's a more succinct way to go about it, but:
Perhaps asking this question here wasn't necessary (it has been a while since I've python-ed, and was hoping that some new library had been developed for this since), but I hope this can be a reference for others who have the same goal.
This operation will be performed for every pixel in the image (sometimes millions of times) for thousands of images (scanned pages), so therein are my performance issue worries, but thanks to numpy, this code is pretty quick.
Here’s a little example of
skimage.draw.circle()
which doesn’t actually draw a circle but gives you the coordinates of points within a circle which you can use to index Numpy arrays with.